

The 171N Threaded Ball Valves are UL listed and FM Approved for use in fire protection systems. Valves have a rugged, dependable design, meeting rigid specification for residential, commercial and industrial applications. The two piece 171N full port design is available in sizes ¹/₄" through 4". All valves conform to MSS-SP-11 0, MSS-SP-25 and Federal Specification WW-V-35B Type II, Class A Style 3. The valves are available in triple stem seal, hard chrome plated ball, blow-out proof stem, adjustable packing gland, a bubble tight shut off and a floating ball for an economical solution.

MATERIAL SPECIFICATIONS

BODY: Brass, ASTM B124, Alloy C37700

RETAINER: Brass, ASTM B124, Alloy C37700

BALL: Brass, ASTM B124, Alloy C37700 Chrome Plated

STEM: Brass, ASTM B124, Alloy C37700 Nickel Plated

SEAT RING: PTFE

PACKING: PTFE

PACKING NUT: Steel, Zinc

PACKING GLAND: Brass, ASTM B124, Alloy C37700 Nickel Plated

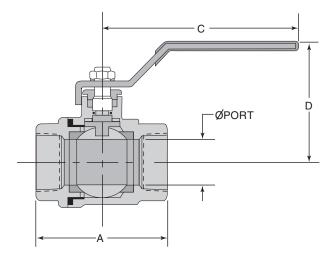
FRICTION WASHER: PTFE

STEM O-RING: NBR 75 Shore A

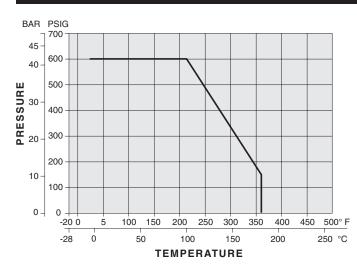
HANDLE: Steel, Zinc Plated to 2", Aluminum to 4"

HANDLE COVER: Yellow PVC Coated to 2", Yellow Enamel to 4"

HANDLE NUT: Steel, Zinc Plated


AVAILABLE OPTIONS* LEVER HANDLE: 1/4" - 4"

APPROVAL STAMP
Approved
Approved as noted
🗋 Not approved
Remarks:


FIG. 171N International Brass Ball Valve

Nominal	FIG Port	URE 1	71N F ر		ORT _{(v}	Approx.
Size	Dia.	A	L L		CV CV	Wt. Ea.
In./mm	In./mm	In./mm	In./mm	In./mm		Lbs./Kg
1/4	3/8	2	31/8	13/4	6	0.3
8	10	51	98	45		0.1
3/8	3/8	2	31/8	13/4	7	0.3
10	10	51	98	45		0.1
1/2	%16	27/16	31/8	11/8	19	0.4
15	14	62	98	48		0.2
3/4	3/4	211/16	4 ¹³ / ₁₆	21/4	35	.7
20	19	68	122	57		0.3
1	15/16	31/16	4 ¹³ / ₁₆	27/16	50	1.0
25	24	78	122	62		0.5
11/4	11/4	31/16	6	31/16	104	2.0
32	32	87	152	78		0.9
11/2	1%16	31/8	6	35/16	268	3.1
40	40	98	152	84		1.4
2	115/16	45/16	63/8	3 ¹³ /16	309	4.2
50	49	110	162	97		1.9
21/2	2%16	5%16	81/16	5	629	8.0
65	65	141	205	127		3.7
3	31/8	6 ⁷ /16	85/16	51/16	1018	12.0
80	79	164	205	138		5.9
4	315/16	7%	101/4	65/16	1622	22.0
100	100	194	260	160		10.0

PRESSURE VS. TEMPERATURE

Notes:

- Dimensions of solder joint ends conform to ANSI B16.22. Solder end valves are designed to be used with solders not exceeding a melting point of 470°F/250°C. Higher temperatures may damage the seal material.
- For solder joint valves, the pressure/temperature rating is dependent on the solder material used. Please refer to the limitations listed in ANSI B16.18.
- Rate of Flow Calculations for liquids: To determine the flow rate of a liquid passing through a valve, use the following formula:

$$Q_{L} = C_{V} \left(\sqrt{\frac{\Delta P}{S_{L}}} \right)$$

Where: Q_L = flow of liquid in gallons per minute (GPM)

 $C_v =$ flow coefficient